top of page
Search
Writer's pictureDavid Ojcius

Your next vaccine could be grown in a tobacco plant

Your next vaccine could be grown in a tobacco plant. Although there are no plant-based vaccines available for human use, several are in the pipeline, including plant-based #COVID19 & #flu vaccines.


The COVID-19 pandemic has exposed glaring gaps in the world’s current vaccine production capacities. Conventional vaccine manufacturing is costly and complex. As a result, only a handful of countries have the technology, human resources, and funds to make vaccines; those that are able have faced recurrent challenges of contamination and quality control in the race to manufacture and distribute billions of COVID-19 vaccines. Conventional vaccines also have to be kept cold, some as cold as -60 degrees Celsius, during transport and storage. The vaccine cold chain is not only costly but is also a major barrier for vaccine distribution in rural, hard-to-reach communities and in countries with limited infrastructure. The solution, some scientists believe, is using plants to manufacture vaccines.

Although there are no plant-based vaccines available for human use, several are in the pipeline. Medicago, a Canadian biotechnology company, has developed a plant-based COVID-19 vaccine that is currently in phase three clinical trials. The company’s plant-based flu vaccine has completed clinical trials and is awaiting final approval from the Canadian government, according to Brian Ward, the company’s medical officer. In December, Kentucky BioProcessing, the U.S. biotechnology wing of the British American Tobacco Company, announced its plant-based COVID-19 vaccine was entering phase one clinical trials, and last October, Japanese-owned Icon Genetics GmbH launched phase one clinical trials for its plant-derived norovirus vaccine. Universities, biotechnology start-ups, and governments have formed well-financed partnerships to expand the field. The South Korean government has invested $13.5 billion (£9.8 billion) toward plant-based vaccine research, and the country’s first plant-based vaccine production facility in Pohang city is expected to open in October. By one estimate, the plant-based vaccine market value is predicted to rise from £30 to £430 million over the next seven years.

“The plant-made vaccine industry has been moving slowly but surely forward. We’re at the point where making something like a vaccine to COVID is actually very feasible and very fast, so right now we are at the point where we can have tens of millions of vaccine available within, I’d say, the next six months or so,” says Kathleen Hefferon, an author and professor of microbiology at Cornell University, who specialises in plant research and agricultural biotechnology. “What I am really hoping is that this opens the floodgates for new advances in plant-made vaccine development, because now we will see some successes.”

The problems with traditional vaccines

Plant-based vaccine technology is not new; its proof-of-concept dates back about 30 years. Scientists have used potatoes, rice, spinach, corn, and other plants to make vaccines for dengue, polio, malaria, and the plague, but none of these were taken through to end-stage clinical trials, perhaps due to the lack of a regulatory framework for plant-based medicines or hesitancy around investing in emerging biotechnologies, according to Hefferon.

In 2006, the U.S. Department of Agriculture approved a plant-based vaccine for Newcastle disease, which infects poultry. But there has never been a plant-based vaccine approved for use in humans or, until recently, even one that made it to advanced clinical trials.

To make vaccines, scientists must mass produce antigens, molecules that trigger an immune response to a specific virus or bacteria. Common antigens include inactivated or killed viruses and bacteria, toxins, or viral and bacterial proteins such as the COVID-19 spike protein. For the Pfizer-BioNTech and Moderna COVID-19 vaccines, the mRNA molecules—the little pieces of genetic material with the instructions for human cells to manufacture the COVID-19 spike protein—must also be mass produced in expensive facilities and then purified.

Antigens for conventional vaccines are made by infecting laboratory-controlled cells (from insects, monkey kidneys, hamster ovaries, or others) with a virus or a bit of viral genetic code that tricks the cells to make copies of the virus or antigen. The cell lines are incubated in large, metal bioreactors for days to weeks, then undergo a lengthy and complex purification process before being packaged into vials.

The challenge is bioreactors are expensive, they require specially trained personnel to manage them, and the risk of contamination is high, so bioreactors growing different types of antigens must be kept in separate buildings and in tightly controlled, sterile conditions.

“We have seen in COVID that there isn’t enough manufacturing capacity globally to make vaccines for everyone,” says John Tregoning, an infectious diseases researcher at U.K.’s Imperial University. This is due to the prohibitive cost, space, and personnel requirements. The U.S. Department of Defence estimated that it costs $1.5 billion (£1.1 billion) to maintain a facility that makes only three vaccines for 25 years.

Plants as vaccine factories

Plant-based vaccines eliminate the need for bioreactors because they themselves are the bioreactors. Plants can be grown in climate-controlled, pharmaceutical-grade greenhouses that keep out bugs and pests but do not require sterile conditions.

In Medicago’s greenhouse in Raleigh, North Carolina, two mechanical arms pick up a steel tray of 126 juvenile Nicotiana benthamiana plants, a weedy, Australian cousin of the tobacco plant used in cigarette products. The tray of plants is swiftly turned upside down and dunked into a metal basin of liquid containing millions of agrobacteria, a group of bacteria that naturally infect plants. The agrobacteria in this greenhouse are altered to contain a small piece of DNA from the influenza or COVID-19 virus. While the plants are submerged, a small vacuum sucks at the plant’s roots causing the leaves to collapse and shrivel up. A few seconds later, the vacuum is released, causing the leaves to re-expand and, like a sponge, soak up the liquid carrying the agrobacteria, which spread throughout the entire vascular structure of the plant.

In a matter of minutes, the Nicotiana benthamiana plants have been transformed into mini bioreactors. The agrobacteria transfer the viral DNA to the plant cells, which then make millions of copies of virus-like particles that serve as antigens but are not infectious.

“It’s totally cool. It’s one of the best things actually. It’s called agroinfiltration or vacuum infiltration,” says Medicago’s Brian Ward. The plants are resettled in the greenhouse and after five or six days, the leaves are harvested, placed on a conveyor belt, chopped into tiny pieces, and soaked in an enzyme bath that breaks down the hard plant cell wall and releases millions of virus-like particles, which are purified and packaged, Ward explains. The finished product is a plant-derived vaccine. In 2018, Medicago’s flu vaccine was the first in the world to complete phase three clinical trials.

For conventional vaccines, once the virus or viral particles are extracted from the cells that grew them and purified, they must be kept cold. This includes Medicago’s plant-based flu and COVID-19 vaccines.


Read more at:

https://www.nationalgeographic.co.uk/science-and-technology/2021/07/your-next-vaccine-could-be-grown-in-a-tobacco-plant




12 views0 comments

Recent Posts

See All

Comments


bottom of page